Subscribe to RSS
DOI: 10.1055/s-2007-992810
© Georg Thieme Verlag KG Stuttgart · New York
Prefrontal Dopamine Signaling in Schizophrenia - The Corticocentric Model
Publication History
Publication Date:
17 December 2007 (online)

Abstract
Diminished prefrontal dopamine (DA) signaling apparently contributes to schizophrenia illness. In the proposed corticocentric model, diminished DA is changing the D2/D1 receptor activation ratio in favor of D2 activation which - through a cascade of intracellular molecular events - ultimately decreases the neuronal signal-to-noise ratio (SNR) thereby destabilizing cortical microcircuits resulting in cognitive deficits and other clinical symptoms. The present overview will outline cortical DA effects both on the neural network and systems biology level and their relationship to schizophrenia illness. The proposed model will be finally discussed within the framework of the currently still dominant hypothesis of the striatal hyperdopaminergic state in schizophrenia.
References
- 1
Abi-Dargham A, Mawlawi O, Lombardo I, Gil R, Martinez D, Huang Y, Hwang DR, Keilp J, Kochan L, Heertum R Van, Gorman JM, Laruelle M.
Prefrontal dopamine D1 receptors and working memory in schizophrenia.
J Neurosci.
2002;
22
3708-3719
MissingFormLabel
- 2
Akil M, Pierri JN, Whitehead RE, Edgar CL, Mohila C, Sampson AR, Lewis DA.
Lamina-specific alterations in the dopamine innervation of the prefrontal cortex in
schizophrenic subjects.
Am J Psychiatry.
1999;
56
1580-1589
MissingFormLabel
- 3
Albert KA, Hemmings
Jr
HC, Adamo AI, Potkin SG, Akbarian S, Sandman CA, Cotman CW, Bunney
Jr
WE, Greengard P.
Evidence for decreased DARPP-32 in the prefrontal cortex of patients with schizophrenia.
Arch Gen Psychiatry.
2002;
59
705-712
MissingFormLabel
- 4
Arnsten AFT, Goldman-Rakic PS.
Stress impairs prefrontal cortex cognitive function in monkeys: role of dopamine.
Soc Neurosci Abstr.
1990;
16
164
MissingFormLabel
- 5
Arnsten AFT.
The biology of feeling frazzled.
Science.
1998;
280
1711-1712
MissingFormLabel
- 6
Arnsten AFT.
Through the looking glass: differential noradrenergic modulation of prefrontal cortical
function.
Neural Plast.
2000;
7
133-146
MissingFormLabel
- 7
Arnsten AF.
Catecholamine and second messenger influences on prefrontal cortical networks of „representational
knowledge”: A rational bridge between genetics and the symptoms of mental illness.
Cereb Cortex.
2007;
, [Epub ahead of print]
MissingFormLabel
- 8
Bearden CE, Jawad AF, Lynch DR, Sokol S, Kanes SJ, MacDonald-MacGinn DM. et al .
Effects of a functional COMT polymorphism on prefrontal cognitive function in patients
with 22q11.2 deletion syndrome.
Am J Psychiatry.
2004;
161
1700-1702
MissingFormLabel
- 9
Bertolino A, Breier A, Callicott JH, Adler C, Mattay VS, Shapiro M, Frank JA, Pickar D, Weinberger DR.
The relationship between dorsolateral prefrontal neuronal N-acetylaspartate and evoked
release of striatal dopamine in schizophrenia.
Neuropsychopharmacology.
2000;
22
125-132
MissingFormLabel
- 10
Bertolino A, Caforio G, Blasi G, Candia M De, Latorre V, Petruzzella V. et al .
Interaction ofCOMT (Val(108/158)Met) genotype and olanzapine treatment on prefrontal
cortical function in patients with schizophrenia.
Am J Psychiatry.
2004;
161
1798-1805
MissingFormLabel
- 11
Bilder RM, Volavka J, Czobor P, Malhotra AK, Kennedy JL, Ni X. et al .
Neurocognitive correlates of the COMT Val (158) Met polymorphism in chronic schizophrenia.
Biol Psychiatry.
2002;
52
701-707
MissingFormLabel
- 12
Blackwood NJ, Howard RJ, Bentall RP, Murray RM.
Cognitive neuropsychiatric models of persecutory delusions.
Am J Psychiatry.
2001;
158
527-539
MissingFormLabel
- 13
Blank T, Nijholt I, Teichert U, Kügler H, Behrsing H, Fienberg A, Greengard P, Spiess J.
The phosphoprotein DARPP-32 mediates cAMP-dependent potentiation of striatal N-methyl-D-aspartate
responses.
Proc Natl Acad Sci USA.
1997;
94
14859-14864
MissingFormLabel
- 14
Breier A, Adler CM, Weisenfeld N, Su TP, Elman I, Picken L, Malhotra AK, Pickar D.
Effects of NMDA antagonism on striatal dopamine release in healthy subjects: application
of a novel PET approach.
Synapse.
1998;
29
142-147
MissingFormLabel
- 15
Brozoski T, Brown RM, Rosvold HE, Goldman PS.
Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of
rhesus monkey.
Science.
1979;
205
929-931
MissingFormLabel
- 16
Caille I, Dumartin B, Bloch B.
Ultrastructural localization of D1 dopamine receptor immunoreactivity in rat striatonigral
neurons and its relation with dopaminergic innervation.
Brain Res.
1996;
730
17-31
MissingFormLabel
- 17
Carlsson A.
The current status of the dopamine hypothesis of schizophrenia.
Neuropsychopharmacology.
1988;
1
179-186
MissingFormLabel
- 18
Carlsson A.
The neurochemical circuitry of schizophrenia.
Pharmacopsychiatry.
2006;
39
((Suppl 1))
S10-S14
MissingFormLabel
- 19
Chen J, Lipska BK, Halim N, Ma QD, Matsumoto M, Melhem S. et al .
Functional analysis of genetic variation in COMT: Effects on mRNA, protein and enzyme
activity in postmortem brain.
Am J Hum Genet.
2004;
75
807-821
MissingFormLabel
- 20
Chen L, Bohanick JD, Nishihara M, Seamans JK, Yang CR.
Dopamine D1/5 receptor-mediated long-term potentiation of intrinsic excitability in
rat prefrontal cortical neurons: Ca2+-dependent intracellular signaling.
J Neurophysiol.
2007;
97
2448-2464
MissingFormLabel
- 21
Delle Donne KT, Sesack SR, Pickel VM.
Ultrastructural immunocytochemical localization of neurotensin and the dopamine D2
receptor in the rat nucleus accumbens.
J Comp Neurol.
1996;
371
552-566
MissingFormLabel
- 22
Deutch AY.
The regulation of subcortical dopamine systems by the prefrontal cortex: interactions
of central dopamine systems and the pathogenesis of schizophrenia.
J Neural Transm Suppl.
1992;
36
61-89
MissingFormLabel
- 23
Diamond A, Briand L, Fossella J, Gehlbach L.
Genetic and neurochemical modulation of prefrontal functions in children.
Am J Psychiatry.
2004;
161
125-132
MissingFormLabel
- 24
Dierks T, Linden DE, Jandl M, Formisano E, Goebel R, Lanfermann H, Singer W.
Activation of Heschl's gyrus during auditory hallucinations.
Neuron.
1999;
22
615-621
MissingFormLabel
- 25
Durstewitz D.
A few important pointds about dopamine's role in neural network dynamics.
Pharmacopsychiatry.
2006;
1
((Suppl 1))
72-75
MissingFormLabel
- 26
Durstewitz D, Seamans JK, Sejnowski TJ.
Neurocomputational models of working memory.
Nat Neurosci.
2000;
((Suppl 3))
1184-1191
MissingFormLabel
- 27
Durstewitz D, Seamans JK.
The computational role of dopamine D1 receptors in working memory.
Neural Netw.
2002;
15
561-572
MissingFormLabel
- 28
Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE. et al .
Effect ofCOMTVal108/158Met genotype on frontal lobe function and risk for schizophrenia.
Proc Natl Acad Sci USA.
2001;
98
6917-6922
MissingFormLabel
- 29
Fan JB, Zhang CS, Gu NF, Li XW, Sun WW, Wang HY, Feng GY, St Clair D, He L.
Catechol-O-methyltransferase gene Val/Met functional polymorphism and risk of schizophrenia:
a large-scale association study plus meta-analysis.
Biol Psychiatry.
2005;
57
139-144
MissingFormLabel
- 30
Fienberg AA, Hiroi N, Mermelstein PG, Song W, Snyder GL, Nishi A, Cheramy A, O'Callaghan JP, Miller DB, Cole DG, Corbett R, Haile CN, Cooper DC, Onn SP, Grace AA, Ouimet CC, White FJ, Hyman SE, Surmeier DJ, Girault J, Nestler EJ, Greengard P.
DARPP-32: regulator of the efficacy of dopaminergic neurotransmission.
Science.
1998;
281
838-842
MissingFormLabel
- 31
Fisher RS, Levine MS, Sibley DR, Ariano MA.
D2 dopamine receptor protein location: Golgi impregnation-gold toned and ultrastructural
analysis of the rat neostriatum.
J Neurosci Res.
1994;
38
551-564
MissingFormLabel
- 32
Foltynie T, Goldberg TE, Lewis SG, Blackwell AD, Kolachana BS, Weinberger DR. et al .
Planning ability in Parkinson's disease is influenced by the COMT val158met polymorphism.
Mov Disorder.
2004;
19
885-891
MissingFormLabel
- 33
Gallinat J, Bajbouj M, Sander T, Schlattmann P, Ferro EF, Goldman D, Winterer G.
Association of the G1947A COMT (Val(108/158)Met) gene polymorphism with prefrontal
P300 during information processing.
Biol Psychiatry.
2003;
54
40-48
MissingFormLabel
- 34
Glatt SJ, Faraone SV, Tsuang MT.
Association between a functional catechol-O-methyltransferase gene polymorphism and
schizophrenia: meta-analysis of case-control and family-based studies.
Am J Psychiatry.
2003;
160
469-476
MissingFormLabel
- 35
Gogos JA, Morgan M, Luine V, Santha M, Ogawa S, Pfaff D, Karayiorgou M.
Catechol-O-methyltransferase-deficient mice exhibit sexually dimorhic changes in catecholamine
levels and behavior.
Proc Natl Acad Sci USA.
1998;
95
9991-9996
MissingFormLabel
- 36
Goldberg TE, Egan MF, Gscheidle T, Coppola R, Weickert T, Kolachana BS. et al .
Executive subprocesses in working memory: Relationship to COMT Val158Met genotype
in schizophrenia.
Arch Gen Psychiatry.
2003;
60
889-896
MissingFormLabel
- 37 Goldman-Rakic PS. Prefrontal cortical dysfunction in schizophrenia: the relevance of working memory. In: Carroll BJ, Barrett JE, eds.
Psychopathology and the brain . New York: Raven Press 1991: 1-23MissingFormLabel - 38
Grace AA.
Cortical regulation of subcortical dopamine systems and ist possible relevance to
schizophrenia.
J Neural Transm Genet Sect.
1993;
91
111-134
MissingFormLabel
- 39
Greengard P.
The neurobiology of slow synaptic transmission.
Science.
2001;
294
1024-1030
MissingFormLabel
- 40
Guo N, Hwang DR, Lo ES, Huang YY, Laruelle M, Abi-Dargham A.
Dopamine depletion and in vivo binding of PET D1 receptor radioligands: implications
for imaging studies in schizophrenia.
Neuropsychopharmacology.
2003;
28
1703-1711
MissingFormLabel
- 41
Gurden H, Takita M, Jay TM.
Essential role of D1 but not D2 receptors in the NMDA receptor-dependent long-term
potentiation at hippocampal-prefrontal cortex synapses in vivo.
J Neurosci.
2000;
20
RC106
MissingFormLabel
- 42
Hallett PJ, Spoelgen R, Hyman BT, Standaert DG, Dunah AW.
Dopamine D1 activation potentiates striatal NMDA receptors by tyrosine phosphorylation-dependent
subunit trafficking.
J Neurosci.
2006;
26
4690-4700
MissingFormLabel
- 43
Hemmings
Jr
HC, Girault JA, Nairn AC, Bertuzzi G, Greengard P.
Distribution of protein phosphatase inhibitor-1 in brain and peripheral tissues of
various species: comparison with DARPP-32.
J Neurochem.
1992;
59
1053-1061
MissingFormLabel
- 44
Hersch SM, Ciliax BJ, Gutekunst C-A, Rees HD, Heilman CJ, Yung KKL, Bolam JP, Ince E, Yi H, Levey AI.
Electron microscopic analysis of D1 and D2 dopamine receptor proteins in the dorsal
striatum and their synaptic relationships with motor corticostriatal afferents.
J Neurosci.
1995;
15
5222-5237
MissingFormLabel
- 45
Hotte M, Thuault S, Lachaise F, Dineley KT, Hemmings HC, Nairn AC, Jay TM.
D1 receptor modulation of memory retrieval performance is associated with changes
in pCREB and pDARPP-32 in rat prefrontal cortex.
Behav Brain Res.
2006;
171
127-133
MissingFormLabel
- 46
Huang YY, Kandel ER.
D1/D5 receptor agonists induce a protein synthesis-dependent late potentiation in
the CA1 region of the hippocampus.
Proc Natl Acad Sci USA.
1995;
92
2446-2450
MissingFormLabel
- 47
Huang YY, Simpson E, Kellendonk C, Kandel ER.
Genetic evidence for the bidirectional modulation of synaptic plasticity in the prefrontal
cortex by D1 receptors.
Proc Natl Acad Sci USA.
2004;
101
3236-3241
MissingFormLabel
- 48
Huotari M, Gogos JA, Karayiorgou M, Koponen O, Forsberg M, Raasmaja A. et al .
Brain catecholamine metabolism in catechol-O-methyltransferase (COMT)-deficient mice.
Eur J Neurosci.
2002;
15
246-256
MissingFormLabel
- 49 Jackson JH.
Selected writings . Taylor, J, ed. London: Hodder and Stoughton 1931MissingFormLabel - 50
Jaskiw GE, Karoum FK, Weinberger DR.
Persistent elevations in dopamine and its metabolites in the nucleus accumbens after
mild subchronic stress in rats with ibotenic acid lesions of the medial prefrontal
cortex.
Brain Res.
1990;
534
321-323
MissingFormLabel
- 51
Karoum F, Chrapusta SJ, Egan MF.
3-methoxytyramine is the major metabolite of released dopamine in the rat frontal
cortex: Reassessment of the effects of antipsychotics on the dynamics of dopamine
release and metabolism in the frontal cortex, nucleus accumbens, and striatum by a
simple two pool model.
J Neurochem.
1994;
63
972-979
MissingFormLabel
- 52
Kebabian JW, Calne DB.
Multiple receptors for dopamine.
Nature.
1979;
277
93-96
MissingFormLabel
- 53
Kircher TT, Liddle PF, Brammer MJ, Williams SC, Murray RM, MacGuire PK.
Neural correlates of formal thought disorder in schizophrenia: preliminary findings
from a functional magnetic resonance imaging study.
Arch Gen Psychiatry.
2001;
58
769-774
MissingFormLabel
- 54
Konrad A, Winterer G.
Disturbed Structural Connectivity in Schizophrenia-Primary Factor in Pathology or
Epiphenomenon?.
Schizophr Bull.
2007;
, [Epub ahead of print]
MissingFormLabel
- 55
Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski CL, Weinshilboum RM.
Human catechol-O-methyltransferase pharmacogenetics: Description of a functional polymorphism
and its potential application to neuropsychiatric disorders.
Pharmacogenetics.
1996;
6
243-250
MissingFormLabel
- 56
Laruelle M, Abi-Dargham A, Dyck CH van, Gil R, D'Souza CD, Erdos J, MacCance E, Rosenblatt W, Fingado C, Zoghbi SS, Baldwin RM, Seibyl JP, Krystal JH, Charney DS, Innis RB.
Single photon emission computerized tomography imaging of amphetamine-induced dopamine
release in drug-free schizophrenic subjects.
Proc Natl Acad Sci USA.
1996;
93
9235-9240
MissingFormLabel
- 57
Leuner K, Müller WE.
The complexity of the dopaminergic synapses and their modulation by antipsychotics.
Pharmacopsychiatry.
2006;
((Suppl 1))
15-20
MissingFormLabel
- 58
Li Y-H, Wirth T, Huotari M, Laitinen K, MacDonald E, Mannisto PT.
No change of brain extracellular catecholamine levels after acute catechol-O-methyltransferase
inhibition: A microdialysis study in anaesthetized rats.
Eur J Pharm.
1998;
356
127-137
MissingFormLabel
- 59
Lindskog M, Svenningsson P, Fredholm BB, Greengard P, Fisone G.
Activation of dopamine D2 receptors decreases DARPP-32 phosphorylation in striatonigral
and striatopallidal projection neurons via different mechanisms.
Neuroscience.
1999;
88
1005-1008
MissingFormLabel
- 60
Lotta T, Vidgren J, Tilgmann C, Ulmanen I, Melen K, Julkunen I, Taskinen J.
Kinetics of human soluble and membrane-bound catechol-O-methyltransferase: A revised
mechanism and description of the thermolabile variant of the enzyme.
Biochemistry.
1995;
34
4202-4210
MissingFormLabel
- 61
Malhotra AK, Kestler LJ, Mazzanti C, Bates JA, Goldberg T, Goldman D.
A functional polymorphism in the COMT gene and performance on a test of prefrontal
cognition.
Am J Psychiatry.
2002;
159
652-654
MissingFormLabel
- 62
Matsumoto M, Weickert CS, Akil M, Lipska BK, Hyde TM, Herman MM. et al .
Catechol-O-methyltransferase mRNA expression in human and rat brain: Evidence for
a role in cortical neuronal function.
Neuroscience.
2003;
116
127-137
MissingFormLabel
- 63
Mattay VS, Goldberg TE, Fera F, Hariri AR, Tessitore A, Egan MF. et al .
Catechol-O-methyltransferase val158met genotype and individual variation in the brain
response to amphetamine.
Proc Natl Acad Sci USA.
2003;
100
6186-6191
MissingFormLabel
- 64
Meyer-Lindenberg A, Miletich RS, Kohn PD, Esposito G, Carson RE, Quarantelli M, Weinberger DR, Berman KF.
Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in
schizophrenia.
Nat Neurosci.
2002;
5
267-271
MissingFormLabel
- 65
Meyer-Lindenberg A, Nichols T, Callicott JH, Ding J, Kolachana B, Buckholtz J, Mattay VS, Egan M, Weinberger DR.
Impact of complex genetic variation in COMT on human brain function.
Mol Psychiatry.
2006;
11
867-877
MissingFormLabel
- 66
Meyer-Lindenberg A, Straub RE, Lipska BK, Verchinski BA, Goldberg T, Callicott JH, Egan MF, Huffaker SS, Mattay VS, Kolachana B, Kleinman JE, Weinberger DR.
Genetic evidence implicating DARPP-32 in human frontostriatal structure, function,
and cognition.
J Clin Invest.
2007;
117
672-682
MissingFormLabel
- 67
Narendran R, Hwang DR, Slifstein M, Hwang Y, Huang Y, Ekelund J, Guillin O, Scher E, Martinez D, Laruelle M.
Measurement of the proportion of D2 receptors configured in state of high affinity
for agonists in vivo: a positron emission tomography study using [11C]N-propyl-norapomorphine
and [11C]raclopride in baboons.
J Pharmacol Exp Ther.
2005;
315
80-90
MissingFormLabel
- 68
Neve KA, Seamans JK, Trantham-Davidson H.
Dopamine receptor signaling.
J Recept Signal Transduct Res.
2004;
24
165-205
MissingFormLabel
- 69
Nicodemus KK, Luna A, Vakkalanka R, Goldberg T, Egan M, Straub RE, Weinberger DR.
Further evidence for association between ErbB4 and schizophrenia and influence on
cognitive intermediate phenotypes in healthy controls.
Mol Psychiatry.
2006;
11
1062-1065
MissingFormLabel
- 70
Nicodemus KK, Kolachana BS, Vakkalanka R, Straub RE, Giegling I, Egan MF, Rujescu D, Weinberger DR.
Evidence for statistical epistasis between catechol-O-methyltransferase (COMT) and
polymorphisms in RGS4, G72 (DAOA), GRM3, and DISC1: influence on risk of schizophrenia.
Hum Genet.
2007;
120
889-906
MissingFormLabel
- 71
Nishi A, Bibb JA, Matsuyama S, Hamada M, Higashi H, Nairn AC, Greengard P.
Regulation of DARPP-32 dephosphorylation at PKA- and Cdk5-sites by NMDA and AMPA receptors:
distinct roles of calcineurin and protein phosphatase-2A.
J Neurochem.
2002;
81
832-841
MissingFormLabel
- 72
Nuechterlein KH, Dawson ME.
A heuristic vulnerability/stress model of schizophrenic episodes.
Schizophr Bulletin.
1984;
10
300-312
MissingFormLabel
- 73
Otani S, Daniel H, Roisin MP, Crepel F.
Dopaminergic modulation of long-term synaptic plasticity in rat prefrontal neurons.
Cereb Cortex.
2003;
13
1251-1256
MissingFormLabel
- 74
Paulson PE, Robinson TE.
Amphetamine-induced time-dependent sensitization of dopamine neurotransmission in
the dorsal and ventral striatum: a microdialysis study in behaving rats.
Synpapse.
1995;
19
56-65
MissingFormLabel
- 75
Pycock CJ, Kerwin RW, Carter CJ.
Effect of lesion of cortical dopamine terminals on subcortical dopamine receptors
in rats.
Nature.
1980;
286
74-76
MissingFormLabel
- 76
Rao SG, Williams GV, Goldman-Rakic PS.
Destruction and creation of spatial tuning by disinhibition: GABA(A) blockade of prefrontal
cortical neurons engaged by working memory.
J Neurosci.
2000;
20
485-494
MissingFormLabel
- 77 Robinson TE. The neurobiology of amphetamine psychosis: Evidence from studies with an animal model. In: Nakazawa T, ed.
Taniguchi Symposia on Brain Sciences, Vol 14, Biological Basis of Schizophrenia . Japan Scientific Societies Press, Tokyo 1991: 185-201MissingFormLabel - 78
Rosa A, Peralta V, Cuesta MJ, Zarzuela A, Serrano F, Martinez-Larrea A, Fananas L.
New evidence of association between COMT gene and prefrontal neurocognitive function
in healthy individuals from sibling pairs discordant for psychosis.
Am J Psychiatry.
2004;
161
1110-1112
MissingFormLabel
- 79
Roth RH, Tam SY, Ida Y, Yang JX, Deutch AY.
Stress and the mesocorticolimbic dopamine systems.
Ann N Y Acad Sci.
1988;
537
138-147
MissingFormLabel
- 80
Roy K, Murtie JC, El-Khodor BF, Edgar N, Sardi SP, Hooks BM, Benoit-Marand M, Chen C, Moore H, O'Donnell P, Brunner D, Corfas G.
Loss of erbB signaling in oligodendrocytes alters myelin and dopaminergic function,
a potential mechanism for neuropsychiatric disorders.
Proc Natl Acad Sci USA.
2007;
104
8131-8136
MissingFormLabel
- 81
Sawaguchi T, Goldman-Rakic PS.
D1 dopamine receptors in prefrontal cortex: involvement in working memory.
Science.
1991;
251
947-950
MissingFormLabel
- 82
Sawaguchi T, Matsumura M, Kubota K.
Catecholamine sensitivities of motor cortical neurons of the monkey.
Neurosci Lett.
1986;
66
135-140
MissingFormLabel
- 83
Sawaguchi T, Matsumura M, Kubota K.
Dopamine enhances the neuronal activity of spatial short-term memory task in the primate
prefrontal cortex.
Neurosci Res.
1988;
5
465-473
MissingFormLabel
- 84
Seamans JK, Durstewitz D, Christie BR, Stevens CF, Sejnowski TJ.
Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal
cortex neurons.
Proc Natl Acad Sci USA.
2001;
98
301-306
MissingFormLabel
- 85
Seamans JK, Gorelova N, Dustewitz D, Yang CR.
Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal
neurons.
J Neurosci.
2001;
21
3628-3638
MissingFormLabel
- 86
Seamans JK, Yang CR.
The principal features and mechanisms of dopamine modulation in the prefrontal cortex.
Prog Neurobiol.
2004;
74
1-58
MissingFormLabel
- 87
Sekine Y, Iyo M, Ouchi Y, Matsunaga T, Tsukada H, Okada H, Yoshikawa E, Futatsubashi M, Takei N, Mori N.
Methamphetamine-related psychiatric symptoms and reduced brain dopamine transporters
studied with PET.
Am J Psychiatry.
2001;
58
1206-1214
MissingFormLabel
- 88
Sesack SR, Aoki C, Pickel VM.
Ultrastructural localization of D2 receptor-like immunoreactivity in midbrain dopamine
neurons and their striatal targets.
J Neurosci.
1994;
14
88-106
MissingFormLabel
- 89
Shannon CE.
Communication in the presence of noise.
Proceedings of the IRE.
1949;
37
10-21
, Reprinted in Proceedings of the IEEE 1998; 86: 447-458
MissingFormLabel
- 90
Smiley JF, Levey AI, Ciliax BJ, Goldman-Rakic PS.
D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex: predominant
and extrasynaptic localization in dendritic spines.
Proc Natl Acad Sci USA.
1994;
91
5720-5724
MissingFormLabel
- 91
Smith WB, Starck SR, Roberts RW, Schuman EM.
Dopaminergic stimulation of local protein synthesis enhances surface expression of
GluR1 and synaptic transmission in hippocampal neurons.
Neuron.
2005;
45
765-779
MissingFormLabel
- 92
Snyder GL, Fienberg AA, Huganir RL, Greengard P.
A dopamine/D1 receptor/protein kinase A/dopamine- and cAMP-regulated phosphoprotein
(Mr 32 kDa)/protein phosphatase-1 pathway regulates dephosphorylation of the NMDA
receptor.
J Neurosci.
1998;
18
10297-10303
MissingFormLabel
- 93
Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S, Brynjolfsson J, Gunnarsdottir S, Ivarsson O, Chou TT, Hjaltason O, Birgisdottir B, Jonsson H, Gudnadottir VG, Gudmundsdottir E, Bjornsson A, Ingvarsson B, Ingason A, Sigfusson S, Hardardottir H, Harvey RP, Lai D, Zhou M, Brunner D, Mutel V, Gonzalo A, Lemke G, Sainz J, Johannesson G, Andresson T, Gudbjartsson D, Manolescu A, Frigge ML, Gurney ME, Kong A, Gulcher JR, Petursson H, Stefansson K.
Neuregulin 1 and susceptibility to schizophrenia.
Am J Hum Genet.
2002;
71
877-892
MissingFormLabel
- 94
Stoof JC, Kebabian JW.
Opposing roles for D-1 and D-2 dopamine receptors in efflux of cyclic AMP from rat
neostriatum.
Nature.
1981;
294
366-368
MissingFormLabel
- 95
Svenningsson P, Tzavara ET, Carruthers R, Rachleff I, Wattler S, Nehls M, MacKinzie DL, Fienberg AA, Nomikos GG, Greengard P.
Diverse psychotomimetics act through a common signaling pathway.
Science.
2003;
302
1412-1415
MissingFormLabel
- 96
Svenningsson P, Nishi A, Fisone G, Girault JA, Nairn AC, Greengard P.
DARPP-32: an integrator of neurotransmission.
Annu Rev Pharmacol Toxicol.
2004;
44
269-296
MissingFormLabel
- 97
Tan HY, Chen Q, Sust S, Buckholtz JW, Meyers JD, Egan MF, Mattay VS, Meyer-Lindenberg A, Weinberger DR, Callicott JH.
Epistasis between catechol-O-methyltransferase and type II metabotropic glutamate
receptor 3 genes on working memory brain function.
Proc Natl Acad Sci USA.
2007;
104
12536-12541
MissingFormLabel
- 98
Thompson PM, Vidal C, Giedd JN, Gochman P, Blumenthal J, Nicolson R, Toga AW, Rapoport JL.
Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss
in very early-onset schizophrenia.
Proc Natl Acad Sci USA.
2001;
98
11650-11655
MissingFormLabel
- 99
Trantham-Davidson H, Neely LC, Lavin A, Seamans JK.
Mechanisms underlying differential D1 versus D2 dopamine receptor regulation of inhibition
in prefrontal cortex.
J Neurosci.
2004;
24
10652-10659
MissingFormLabel
- 100
Trantham-Davidson H, Kröner S, Seamans JK.
Dopamine modulation of prefrontal cortex interneurons occurs independently of DARPP-32.
Cereb Cortex.
2007;
, [Epub ahead of print]
MissingFormLabel
- 101
Tretter F, Scherer J.
Schizophrenia, Neurobiology and the methodology of systemic modeling.
Pharmacopsychiatry.
2006;
1
((Suppl 1))
26-35
MissingFormLabel
- 102
Tunbridge EM, Bannerman DM, Sharp T, Harrison PJ.
Catechol-o-methyltransferase inhibition improves set-shifting performance and elevates
stimulated dopamine release in the rat prefrontal cortex.
J Neurosci.
2004;
24
5331-5335
MissingFormLabel
- 103
Vanderschuren LJ, Wardeh G, Vries TJ De, Mulder AH, Schoffelmeer AN.
Opposing role of dopamine D1 and D2 receptors in modulation of rat nucleus accumbens
noradrenaline release.
J Neurosci.
1999;
19
4123-4131
MissingFormLabel
- 104
Venton BJ, Seipel AT, Phillips PE, Wetsel WC, Gitler D, Greengard P, Augustine GJ, Wightman RM.
Cocaine increases dopamine release by mobilization of a synapsin-dependent reserve
pool.
J Neurosci.
2006;
26
3206-3209
MissingFormLabel
- 105
Verhoeff NP, Hussey D, Lee M, Tauscher J, Papatheodorou G, Wilson AA, Houle S, Kapur S.
Dopamine depletion results in increased neostriatal D(2), but not D(1), receptor binding
in humans.
Mol Psychiatry.
2002;
7
322-328
MissingFormLabel
- 106
Vogeley K, Kupke C.
Disturbances of time consciousness from a phenomenological and a neuroscientific perspective.
Schizophr Bull.
2007;
33
157-165
MissingFormLabel
- 107
Walaas SI, Greengard P.
DARPP-32, a dopamine- and adenosine 3′:5′-monophosphate-regulated phosphoprotein enriched
in dopamine-innervated brain regions. I. Regional and cellular distribution in the
rat brain.
J Neurosci.
1984;
4
84-98
MissingFormLabel
- 108
Wang XJ.
Toward a profontal microcircuit model for cognitive deficits in schizophrenia.
Pharmacopsychiatry.
2006;
((Suppl 1))
80-88
MissingFormLabel
- 109
Wang J, O’Donnell P.
D(1) dopamine receptors potentiate NMDA-mediated excitability increase in layer V
prefrontal cortical pyramidal neurons.
Cereb Cortex.
2001;
11
452-462
MissingFormLabel
- 110
Weickert TW, Goldberg TE, Mishara A, Apud JA, Kolachana BS, Egan MF, Weinberger DR.
Catechol-O-methyltransferase val158met genotype predicts working memory response to
antipsychotic medications.
Biol Psychiatry.
2004;
56
677-682
MissingFormLabel
- 111
Weickert TW, Goldberg TE.
First- and second-generation antipsychotic medication and cognitive processing in
schizophrenia.
Curr Psychiatry Rep.
2005;
7
304-310
MissingFormLabel
- 112
Weinberger DR.
Implications of normal brain development fort he pathogenesis of schizophrenia.
Arch Gen Psychiatry.
1987;
44
660-669
MissingFormLabel
- 113
Weinberger DR, Berman KF, Illowsky BP.
Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. III.
A new cohort and evidence for a monoaminergic mechanism.
Arch Gen Psychiatry.
1988;
45
609-615
MissingFormLabel
- 114
Weinshilboum RM, Otterness DM, Szumlanski CL.
Methylation pharmacogenetics: Catechol-O-methyltransferase, thiopurine methyltransferase,
and histamine N-methyltransferase.
Annu Rev Pharmacol Toxicol.
1999;
39
19-52
MissingFormLabel
- 115 Wiener N.
Cybernetics or Control and Communication in the Animal and the Machine . MIT Press, Cambridge, MA 1948MissingFormLabel - 116
Winterer G, Ziller M, Dorn H, Frick K, Mulert C, Wuebben Y, Herrmann WM, Coppola R.
Schizophrenia: reduced signal-to-noise ratio and impaired phase-locking during information
processing.
Clin Neurophysiol.
2000;
111
837-849
MissingFormLabel
- 117
Winterer G, Goldman D.
Genetics of human prefrontal function.
Brain Res Brain Res Rev.
2003;
43
134-163
MissingFormLabel
- 118
Winterer G, Coppola R, Goldberg TE, Egan MF, Jones DW, Sanchez CE, Weinberger DR.
Prefrontal broadband noise, working memory, and genetic risk for schizophrenia.
Am J Psychiatry.
2004;
161
490-500
MissingFormLabel
- 119
Winterer G, Weinberger DR.
Genes, dopamine and cortical signal-to-noise ratio in schizophrenia.
Trends Neurosci.
2004;
27
683-690
MissingFormLabel
- 120
Winterer G, Egan MF, Kolachana BS, Goldberg TE, Coppola R, Weinberger DR.
Prefrontal electrophysiologic „noise” and catechol-O-methyltransferase genotype in
schizophrenia.
Biol Psychiatry.
2006;
60
578-584
MissingFormLabel
- 121
Winterer G, Musso F, Vucurevic G, Stoeter P, Konrad A, Seker B, Gallinat J, Dahmen N, Weinberger DR.
COMT genotype predicts BOLD signal and noise characteristics in prefrontal circuits.
Neuroimage.
2006;
32
1722-1732
MissingFormLabel
- 122
Winterer G, Musso F, Beckmann C, Mattay V, Egan MF, Jones DW, Callicott JH, Coppola R, Weinberger DR.
Instability of prefrontal signal processing in schizophrenia.
Am J Psychiatry.
2006;
163
1960-1968
MissingFormLabel
- 123
Winterer G.
Cortical microcircuits in schizophrenia - the dopamine hypothesis revisited.
Pharmacopsychiatry.
2006;
93
((Suppl 1))
S68-S71
MissingFormLabel
- 124
Young CE, Yang CR.
Dopamine D1-like receptor modulates layer- and frequency-specific short-term synaptic
plasticity in rat prefrontal cortical neurons.
Eur J Neurosci.
2005;
21
3310-3320
MissingFormLabel
Correspondence
G. WintererMD, PhD
Department of Psychiatry
Heinrich-Heine University
Bergische Landstr. 2
40629 Duesseldorf
Germany
Phone: +49/211/922 34 63
Fax: +49/211/922 34 95
Email: georg.winterer@uni-duesseldorf.de